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An effort is made to introduce thermodynamic and statistical thermodynamic 
methods into the treatment of nonphysical (e.g., social, economic, etc.) systems. 
Emphasis is placed on the use of the entire thermodynamic framework, not 
merely entropy. Entropy arises naturally, related in a simple manner to other 
measurables, but does not occupy a primary position in the theory. However, 
the maximum entropy formalism is a convenient procedure for deriving the 
thermodynamic analog framework in which undetermined multipliers are ther- 
modynamic-like variables which summarize the collective behavior of the 
system. We discuss the analysis of Levine and his coworkers showing that the 
maximum entropy formalism is the unique algorithm for achieving consistent 
inference of probabilities. The thermodynamic-like formalism for treating a 
single lane of vehicular traffic is developed and applied to traffic in which the 
interaction between cars is chosen to be a particular form of the "follow-the- 
leader" type. The equation of state of the traffic, the distributions of velocity and 
headway, and the various thermodynamic-like parameters, e.g., temperature 
(collective sensitivity), pressure, etc. are determined for an experimental example 
(Holland Tunnel). Nearest-neighbor and pair correlation functions for the 
vehicles are also determined. Many interesting and suggestive results are 
obtained, 

KEY WORDS: Statistical thermodynamics; social systems; single-lane traffic; 
collective behavior. 

1. E N T R O P Y  AS A S E C O N D A R Y  Q U A N T I T Y  

F o r  s o m e  t ime  n o w  inves t i ga to r s  in a var ie ty  of  fields h a v e  been  sea rch ing  

for entropy in n o n p h y s i c a l  systems.  (See, for  example ,  G e o r g e s c u -  
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Roegen, (1) Theil, (2~ Davis, (3) Lisman, (4) and Montroll(5)). It remains a 
problem, in such systems, to deal quantitatively with entropy. 

In information theory the entropy (or negentropy) is selected, as an 
information measure, by enunciating (axiomatizing) an almost exhaustive 
set of qualities which such a measure should have if it is to be 
anthropomorphically satisfying. Then it is shown that the entropy is the 
unique function which meets these requirements. The selection is further 
justified by its obvious utility when applications are attempted. As a result, 
it is a natural step, when considering entropy in a nonphysical system, to 
adopt a function used in information theory and to endow it with a certain 
primacy. As a consequence the Gibbs-like entropy function is essentially 
"plucked from the air" as a measure of uncertainty or disparity. 
Occasionally it is used in an almost mystical fashion; for example, the frac- 
tions which appear in it may not even be identified with probabilities. (2'5) 

Since there are many other quantities besides the Gibbs function 
which could be used as measures of uncertainty, e.g., the variance, why 
should the entropy, among all of them, be distinguished? An answer might 
be found by examining how entropy arises in physics. There it may also be 
used as a measure of uncertainty; but as such, it arises naturally and is 
related in an especially simple manner to other physical measurables such 
as heat capacity. The same should be true in nonphysical systems; entropy 
should be that measure of uncertainty which is simply related to other 
measurables, e.g., to economic measurables such as income, profit, etc. 

The focus on entropy as a primary concept may be misdirected, and 
this may be the reason for some of the controversy surrounding it. In 
physics, entropy is a part of thermodynamics, but it is the entire ther- 
modynamic method which is useful and which occupies the position of 
primacy. This suggests that the main thrust of the search for entropy in 
nonphysical systems should be directed at an attempt to apply the ther- 
modynamic method to these systems, whereby the entropy function will 
appear usefully, but incidentally! This is the direction we shall take in the 
present paper. 

In statistical thermodynamical theory entropy usually appears during 
a process in which a "most probable" distribution, subject to certain con- 
straints, is derived. However, even here, the important point to be made is 
that it is not the maximization of the entropy which is primary, but that the 
distribution is chosen to be completely random, except for the constraints. 
Entropy enters, during this process, through the "back door," and is 
immediately perceived as being quantitatively connected to other ther- 
modynamic measurables. It does not, and need not, occupy a position of 
primacy. 

The "maximum entropy formalism" pioneered by Jaynes, (6) and 
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elaborated by many others, (7a)'3 especially Tribus (8/ and Levine, (9t is 
designed to handle nonphysical systems. In this formalism one considers 
independent events such as the tossings of a coin or the throws of a die. It 
is assumed that the same spectrum of n possible outcomes is available to 
each event, and that the probability of the ith outcome is Pi- One wishes to 
infer the probabilities Pi, but not necessarily by measuring the observed fre- 
quency f . .  In fact n may be such a large number that it may be impractical 
to attempt a direct measurement of all the f~. Instead it may be feasible to 
measure the first moments of certain quantities which are functions of the 
outcome i. Thus, for the rth such quantity the moment M r is  

Ar = ~ p,Ari (1) 
i = 1  

where A, i is the value of the rth quantity associated with the ith outcome. 
Now we may know m first moments (i.e., r runs from 0 to m - 1 ,  with 
re<n). In this case, the set of equations of the type of Eq. (1) cannot be 
inverted to provide a unique specification of the pi, and some algorithm is 
necessary to allow some particular inversion. The algorithm suggested by 
Jaynes involves maximizing the "missing information," i.e., choosing the ps 
so that the missing information is maximized. 

Without going into detail, since Jaynes' work is easily available for 
reference, the "missing information" is, as the name implies, an information 
theoretic concept, and really corresponds to the assumption of maximum 
randomness, limited only by whatever information (constraints) is already 
available to the observer. Such information might be represented by con- 
ditions of the type of Eq. (1). 

2. THE M A X I M U M  E N T R O P Y  F O R M A L I S M  A N D  THE 
C O N S I S T E N T  INFERENCE OF PROBABIL IT IES 

As indicated in the previous section, there are other measures of uncer- 
tainty besides entropy, and this raises the question as to why entropy, 
among all of them, should be distinguished. The simple relationship of 
entropy to other measurables furnishes one reason. However, during the 
past few years Levine and his coworkers ~J~ have provided another com- 
pelling reason, involving "consistency." In order to define "consistency" we 
again consider an event with n possible outcomes such that the probability 

3 For a review of the maximum entropy principle with emphasis on its extension to non- 
equilibrium statistical mechanics and irreversible processes see Ref. 7b. 
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of the ith outcome is Pi. Again there may be an rth quantity associated 
with the outcome, such that Ari is the value of the quantity if the ith out- 
come is realized. Then, as in Eq. (1), the first moment of the average value 
of the rth quantity is given by A r. The first moments of m quantities may 
be known. The entropy corresponding to this event is then specified by 

Sp= - ~ p* ln p* (2) 
i = l  

in which we have used p* in place of Pi- The star indicates that, in Eq. (2), 
the p* are to be regarded as approximations to the true, fundamental 
probabilities p,. Then the algorithm in the maximum entropy formalism 
consists of varying the p*, always subject to the constraints implicit in the 
known m first moments of the type of Eq. (1), until the entropy Sp is 
maximized. Although the complete set of p* obtained in this manner are 
considered approximate, they could in rare circumstances be identical with 

Pi. 
The event having n possible outcomes, could be the realization of 

some ith possible value of some measured quantity in an experiment. Now 
consider a sequence of such measurements in which the ith outcome is 
realized NI a) times. If in the sequence there are N measurements, then 

N} d) = N (3) 
i = 1  

The particular sequence is denoted by the symbol d, and by the word 
"sequence" we mean a series of measurements in which the various out- 
comes, N} d) of kind i, occur in a definite order. We can equally well define a 
"distribution," (denoted by the symbol D) in which the ith outcome occurs 
N} D) times without regard to order. If the events (or measurements) are 
independent, and the true fundamental probabilities p~ are known, then the 
probability PD of the distribution D must be related to the p~ by the 
relation 

PD =OD leI p xl~' (4) 
i=1 

where 

and 

N~D)=N (5) 
i = 1  

N~ 
/2D 1-]i7=1 NI n)! (6) 
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The quantity OD represents the number of different sequences in the dis- 
tribution D. 

There will also be an average value of the rth quantity associated with 
the distribution D, This average value will be 

A(~m= NI~ N (7) 

Furthermore, when the p, are the true fundamental probabilities and Po is 
specified by Eq. (4) it may also be shown that 

D 

if Pi is identified with the "frequency" f,  = (Ni) /N,  where (N~> is the value 
of N} m averaged over the distributions. Equation (8) is the analog, for the 
"distributions", of Eq. (1) for the "events." 

We can also define an entropy for the distributions. Thus we write 

Se = - ~ P* ln(P*/DD) (9) 
D 

where again the stars indicate that the probabilities P* may be 
approximate. Again, the maximum entropy formalism consists of varying 
the P* in Eq. (9) so as to maximize Se subject to the constraints of the 
type of Eq. (8). This allows one to specify the entire set of probabilities P*. 
The moments Ar may be obtained with a high degree of precision by 
repeated measurements, and both the probabilties p* and P* may be 
obtained by applying the maximum entropy formalism to the entropies S v 
and Sp defined in Eqs. (2) and (9), respectively. For the unstarred quan- 
tities the relation between Po and Pt is given by Eq. (4). We may now ask 
what the relation is between the starred quantities obtained by the respec- 
tive application of the maximum entropy formalism. The (remarkable) 
answer contained in the proof of Levine and his coworkers (m) is that the 
starred quantities are also related by Eq. (4), provided that these quantities 
have been obtained by means of the maximum entropy principle, Pi is iden- 
tified with f/, and that the events are independent. Moreover, these authors 
show that the maximum entropy principle provides the unique and only 
algorithm for arriving at probability distributions (albeit approximate 
ones) which satisfy Eq. (4), the relation known to be true for exact 
probabilities. The approximate probabilities are said to be "consistent" if 
they satisfy Eq. (4). In this sense the maximum entropy formalism is the 
only algorithm which preserves "consistency." 
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Furthermore, Levine and coworkers show that the same probability 
distributions p* and P* can be obtained by merely invoking the con- 
straints and requiring the distributions to be consistent in the above sense. 
Thus entropy does not have to be defined and nothing has to be maximized 
in order to solve the inversion problem, and generate the distributions. 
Again, entropy appears to be a secondary rather than a primary quantity, 
although, as a function, it retains its usefulness. All this distinguishes 
entropy from other measures of uncertainty. 

Before proceeding it should be pointed out that, in what appears to be 
a closely related paper, Shore and Johnson ~ have axiomatized the desired 
properties of inference methods (so that they are consistent) rather than the 
desired properties of information measures, and they are able to 
demonstrate the uniqueness of the maximum entropy principle in the sense 
that "deductions made from any other information measure, if carried far 
enough, will eventually lead to contradictions." 

The published work of Levine and his coworkers has involved a 
somewhat formal presentation, and it is possible that more pragmatic 
workers, interested primarily in applications, may not have fully 
appreciated its importance. Therefore, because of what we believe to be its 
instructional merit, we present, here, a sketch of a less rigorous method, 
limited among other things to cases in which N ~  ~ ,  (developed by the 
present authors) which apparently involves the same consistency 
requirement, clothed in another guise. We begin by noting that PD can be 
expressed as 

= o /Z oo, I10) 
/ 

I D '  

where the sum in the denominator goes over all allowed distributions. The 
use of the term "allowed" implies that some distributions may be disallowed 
by the constraints imposed on the system. When the PD are the starred, 
approximate probabilities, obtained by use of an algorithm, we maintain 
"consistency" by continuing to use Eq. (10), 

/ 

I , , t  

The P* are now given by Eq. (4) in which the small pi's are starred, i.e., 

P*=g2o (I (P*) ~v'!~t (12) 
i - - 1  

Equation (11) may be transformed to 

P* = Ko~2 D (13) 
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where Ko = (Y~ 00,) -1 is a unique constant depending on constraints, but 
not on the individual N} m. The sum in Ko goes only over those dis- 
tributions which are allowed by the constraints. 

We now replace p*, in Eq. (12), by 

p* = N~'z')/N =.fl D) (14) 

in which j l  D~ represents the frequency distribution in the Dth distribution. 
This will mean that the frequency in the distribution, ultimately selected by 
the consistency condition, is to be identified with the probability. Since, for 
independent events, it can be shown that the most probable and the 
average distributions are identical, (~~ ~D) will also be the average fre- 
quency. The consistency condition is now implemented by equating the 
right sides of Eqs. (12) and (13). Taking the logarithm of both sides of the 
resulting equation gives 

tl 

N} D) in p* = In K o = K (15) 
i 

where K is another unique constant. Substituting Eq. (14) into Eq. (15) 
gives 

N[ D' ln(N}D~/N)= ~ NI m In N} D ' -  ~ N} v~ In N 
i = 1  i l i - - 1  

= ~ NlmlnNID)-NlnN=K (16) 
i = 1  

where we have used 52 N} D) = N. 
If we take the total differential of Eq, (16) with respect to the various 

N} m, we must bear in mind that N} m are constrained by constraints of the 
type of Eq, (1), i.e., by constraints of the form 

Ar = ~ Arip *= ~ A,.iN}m/N (17) 
i - - 1  i ~ l  

The differential of Eq. (16) is 

lnNl m dNID'+ ~ dNID'-d(NlnN) 
i = l  i - - 1  

= ~ In N} D) dN} ~ + d N -  d(N In N) 
i = 1  

= ~ lnN~D) dN(~ i (18) 
i = l  
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where we have used the facts that N and K are unique constants. Thus we 
arrive at 

In NI D) dNl D) = 0 (19) 
i = l  

where the variations are subject to the constraints, Eq. (17). In this form 
the procedure becomes identical to the maximum entropy formalism and 
the constraints can be applied to Eq. (19) through the use of undetermined 
multipliers. Thus the derived NI D) will be exactly the same as those derived 
by the maximum entropy method, however, it must be remembered that 
the 0 in Eq. (19) comes not from a process of maximization, but rather 
from the consistency condition, i.e., from the fact that K is a unique con- 
stant. Nothing has been maximized and the entropy never has to be defined! 

The ultimate p* are then given by Eq. (14) and agree with both the 
maximum entropy principle and with the consistency condition, enunciated 
in Eqs. (12) and (13). Note that this argument directly shows that the p* 
satisfy an exponential form. Furthermore, this solution is unique. A bit of 
linear algebra suffices to show that one can derive the unique expansion of 
In Pi, in terms of the Ari from the constraints of Eq. (17) (if they are 
linearly independent), and that this expansion is identical to the logarithm 
of the p*. 

Again, the main point of this section is that although the maximum 
entropy formalism is a convenient tool, the same inversion can be achieved 
without it, by using, instead, the more satisfactory (and less subjective) 
consistency condition. Nothing has to be maximized, and entropy does not 
have to be defined. Entropy may be useful, but it is not a primary quantity. 

3. DEPENDENT SUBSYSTEMS 

The discussion in the preceding section is concerned with independent 
events. If we are dealing with physical systems the event may represent a 
subsystem (e.g., a molecule) and the "outcome," a given state of the 
molecule. In particular with such events or subsystems, the order in a par- 
ticular sequence does not influence its probability; only the number of 
times that a given outcome or state occurs has influence. 

For dependent subsystems, the proofs of the last section do not 
necessarily hold. At least, no convincing proof has thus far been advanced. 
Even so this does not necessarily invalidate the maximum entropy for- 
malism, it merely forces reliance on theories of chaos and quasiergodicity 
alone. Nevertheless, in this paper we shall deal with an example involving 
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only independent subsystems. Furthermore, as we shall see later, at least 
for one-dimensional systems, this does not necessarily mean non interacting 

systems. 

4. U N D E T E R M I N E D  MULTIPL IERS 
AS T H E R M O D Y N A M I C - L I K E  V A R I A B L E S  

The approach employed in the present paper focuses on the consistent 
inference of probability distributions for nonphysical systems by using the 
maximum entropy formalism. For this purpose we need not define the 
entropy, but shall merely maximize ~2 D introduced in Section 2. We now 
know that, for independent subsystems, this is merely a convenient way to 
achieve consistent inference. Entropy will ultimately appear, simply connec- 
ted to other measurables, but it need not be treated as a primary quantity. 

In the process of extremalization certain Lagrange (undetermined) 
multipliers will appear. Rather than viewing these as part of a convenient 
device for performing the maximization we inquire into the significance of 
the multipliers. We discover, not surprisingly, that they are ther- 
modynamic-like parameters, which transform by the usual methods of par- 
tial differentiation. However, in attempting to interpret them, we also 
realize that they summarize, in special ways, the "collective" behavior of 
the nonphysical system, and are therefore useful in their own rights. 

Although thermodynamics or probability distributions are not men- 
tioned by them, this last point has been made, recently, by Baxley and 
Moorhouse in connection with optimization in an economic problem. (12) 
The present paper therefore subscribes to their point of view_ 

When suitably interpreted, the Lagrange parameters are natural  sum- 
marizers of collective behavior because they are simply connected, not only 
to one another, but also to other measurables, possibly nonphysical. They 
therefore form the basis of a "thermodynamics" of nonphysical systems. 
Even if the formalism does not lead to exac t  results, the relations can have 
value in a limiting sense. In the following sections we shall subject a par- 
ticular system, namely, a single line of vehicular traffic, to such a ther- 
modynamic-like treatment. 

5. A SINGLE LANE OF CARS 

We address a somewhat idealized version of a single lane of cars. We 
choose this example only because it is useful for illustrating the ther- 
modynamic method in connection with a nonphysical system. Thus, even 
though we are able to arrive at some interesting and suggestive results, our 
goal is not  to provide a primer on traffic engineering. 
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Considerable effort, both experimental a n d  analytical, has been 
devoted to the study of single-lane traffic. 03~16)'4 Much of this effort has 
been concerned with the development of the correct "dynamical" equation 
(or equations) of motion and, in particular, with problems of mode struc- 
ture and stability of the system./ls'tg) Some work has been concentrated on 
the so-called "follow-the-leader" concept in which a "following" car con- 
tinually accelerates in a manner which depends upon its own velocity, the 
velocity of the car directly in front of it (the "leader"), its distance from the 
leader, and the response time of the "follower." In this model a car 
"interacts" only with its nearest neighbor in front. We shall elaborate on 
this later. 

Another approach/2~ has involved studying the relation between the 
local linear density of cars and the local flux density, or local average 
velocity. In this approach it is assumed that the local average velocity is 
determined by the flux density alone. However, we note, for future 
reference in our own development, that it is possible to constrain the 
system in the same way that v~rtual variations are "constrained" to occur in 
thermodynamics, so that additional independent variables besides local 
density come into being. Thus we shall deal with situations in which 
average velocity depends on other variables besides local density. 

Perhaps the most important distinction to be made between our 
development and the preceding ones concerning single-lane traffic is the 
fact that, in our case, the lane, even though moving, is treated as an analog 
thermodynamic system, and is therefore, in this sense, in equilibrium. The 
earlier studies deal with the problems of nonequilibrium transport in the 
system, and are often hydrodynamic in character. In this connection, atten- 
tion is directed to the work of Prigogine and Herman, (22) who have 
developed a formalism, which resembles the Boltzmann transport equation 
of molecular kinetic theory, for treating the flow of traffic (not necessarily 
single lane). The important distinction of our method should be borne 
clearly in mind. 

In the treatments of single-lane traffic undertaken previously the 
system is strictly single lane. No influences other than those internal to the 
system are allowed. Interaction is between cars in the system (follow-the- 
leader). Boundary conditions, e.g., the behavior of the first car, are also 
always within the system. Cars cannot be added laterally to the system, i.e., 
there is nothing which resembles lane switching. In contrast (except for 
lane switching), in our treatment, there can be continuous influences from 
outside the system, but such influences are random, i.e., the world outside 
of the system behaves like a "thermostat." For example, a driver can notice 

4 F o r  overviews o f  some  of  the  m a t h e m a t i c a l  aspec ts  see Ref. 17. 
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something to his side, and alter his velocity because of it. Thus our single 
lane could even be part of a multilane system, the other lanes playing the 
role of a thermostat. The characteristics of the "thermostat" must however 
be measured in each case, usually by determining the magnitudes of the 
thermodynamic-like variables (e.g., undetermined multipliers) of the 
system. However, as indicated, in our system, lane switching will also be 
forbidden. In thermodynamic terms, our system is "closed." 

Some of the results, to be discussed later, of "follow-the-leader" studies 
indicate that, to a high degree of approximation, the velocity of the 
following car depends only on its distance (headway) behind the leading 
car. This dependence may not be absolutely determinate, for example there 
may be a probability distribution for the velocity in which the headway is a 
parameter. In any event, in this approximation, the state of the following 
car is determined by its headway and its velocity. Thus the system can be 
described by independent state occupation numbers as in Section 2 of this 
paper. The consistency arguments of that section are therefore applicable. 
However, we note that this does not mean that the cars are not interacting! 
The fact that the velocity of a following car depends on its distance from 
the preceding car corresponds to an "interaction" between cars. 

6. T H E R M O D Y N A M I C  F O R M A L I S M  FOR THE SINGLE LANE 

We consider a single line of N cars, such that the distance L between 
the first car and the Nth is constrained to be constant. We consider a very 
large system so that N and L are essentially infinite while the ratio NIL 
remains finite. Since N and L are fixed, the linear density of cars N/L, is 
also fixed. We will also assume that the average velocity of a car in the 
system is fixed. These various conditions, of course, place constraints on 
the distribution of velocities (and separations) of the cars. 

A few words concerning the definition of this distribution are in order. 
Ordinarily we would think of the set of allowable velocities and separations 
as forming continua, However, when we eventually deal with entropy, this 
poses a problem because the infinite number of states in the continuum 
causes an infinite entropy. The same problem appears in physical systems, 
when they are considered classically, but disappears when their ultimate 
quantal natures are admitted. Then the classical picture can be patched up 
by assigning (via the uncertainty principle) a phase space volume h s (where 
h is PIanck's constant and f represents the number of degrees of freedom of 
the system) to each "classical" state of the system. (23) 

In our development we shall simplify the exposition by arbitrarily 
quantizing both the velocity and distance. Thus a car may have a velocity 

vn =nu  (20) 
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where n is an integer and u is the quantum of velocity. Similarly the 
headway for a car may be 

lk = kw (21) 

where k is an integer and w is the quantum of distance. Once the formalism 
has been developed (on a quantized basis) we shall pass to the continuum. 
The majority of the derived relationships (with the exception of entropy) 
become insensitive to the size of the quanta while the size is still finite. 
Thus, we can retain the quantized description without having to be too 
precise about the magnitudes of u and w. 

Adopting the quantized approach, we define mnkuw as the number of 
cars having velocities in the range, nu to (n + 1)u and headways in the 
range, kw to (k + 1)w. Thus m,k is a density having the units of reciprocal 
velocity times reciprocal length. In conformance with our earlier discussion, 
n and k are not entirely independent. We express this fact by introducing a 
degeneracy )c~(n)u which measures the number of states having velocities in 
the range, nu to (n + 1)u, when the headway is kw. With this definition we 
can conveniently express the constraints of constant N, constant L, and 
constant average velocity as follows: 

Z Z m,,kuw = N (22) 
n k 

Z Z m,k uw(kw) = L (23) 
n k 

~ m~kuw(nu) = U~ (24) 
n k 

in which O is the constant average velocity. The sums in Eqs. (22), (23), and 
(24) are understood to include the restriction implicit in the depeiadence of n 
upon k. Assuming that all sequences of cars (allowed by the constraints) 
are equally probable we may apply the maximum entropy formalism and 
maximize 

U!/ I~ (mnkuw)! (25) 
/ tl k 

subject to the constraints, Eqs. (22) through (24). Employing the method 
of undetermined multipliers in the usual manner, we find 

in which A is given by 

mnkuw= (N/J)e  ~kw e ~n~ (26) 

A = Z ~ e-~kwe-~" {27) 
n k 
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and where c~ and /3 are undetermined multipliers which have to be deter- 
mined by the substitution of Eq.(26) into Eqs. (23) and (24). 
Equation (26) can be used as a basis for developing a thermodynamics of 
the traffic system, defining the probability P,~uw as 

P,~, uw = mnk uw/N (28) 

whereupon Eq. (26) may be expressed as 

P n k U W ~ -  e ~kw e - ~ n u / d  

We define the quantities, 

(29) 

where 

[= L /N  (34) 

Maintaining N constant, and regarding ~ and fl as the independent 
variables, we easily find from the definition of A in Eq. (27), and the 
definitions of g and / in  Eqs. (24) and (34), that 

dln A = - [ d a  - g dfl (35) 

Furthermore it follows from Eqs. (30) and (31) that 

d r =  -(1/fl 2) dfi (36) 

dp = - ( l / f l )  d~ - (c~/fi 2) d/3 (37) 

Finally, from Eq. (33), we find 

In d = g -  ( g / T )  - ( p [ / T )  (38)  

Taking the total differential of g in Eq. (33), and using Eqs. (35) through 
(38) yields 

dg= T d g - p d [  (39) 

r =  1/p (3o) 

p = ~/fl (31) 

~= - ~ ~ (P~uw) ln(Pnkuw) (32) 
n k 

whence it is easily shown that 

g= T g -  Tln A -  p[ (33) 
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This equation looks suspiciously like the equation based on the combined 
first and second laws of thermodynamics (24/in which g is the analog of the 
internal energy per molecule, g is the analog of the entropy per molecule, 
and [ is the analog of the volume per molecule, while T and p are the 
analogs of the temperature and pressure of a molecular system, respec- 
tively. We will of course adopt this correspondence, and call T and p the 
temperature and pressure. Since we are dealing with a one-dimensional 
system our "volume," /, is actually a length. Reference to Eq. (32) shows 
that g indeed has the usual form of the entropy function and is therefore, 
appropriately the entropy. Unlike the other thermodynamic analogs, it is 
dimensionless. Furthermore, it has not merely been "plucked from the air," 
but has arisen naturally, and is simply connected to other traffic 
measurables such as T5 and L 

The quantity A, as we continue to develop the analogy, plays the role 
of a partition function in the analog statistical thermodynamics. We note, 
from Eq. (38), that 

~ -  T~+p[= - T l n  d = g (40) 

where we have symbolized the sum on the left by the quantity ~. By com- 
parison with the well-known thermodynamic function, we recognize that 
is the analog of the Gibbs free energy for a physical system, and its relation 
to A in Eq. (40) identifies it as the characteristic function for the partition 
function which A represents 

J = Z 2 e P~"'/re ~,/r (41) 
n k 

which, by comparison with its physical counterpart, is clearly the partition 
function in the constant pressure ensemble. ~25) Furthermore, it is well 
established that the characteristic function for the partition functidn in this 
ensemble is the Gibbs free energy. Thus the analogy is (not surprisingly) 
complete. 

At this point it is convenient to remember that the sum ~2 Z in 
Eq. (41) is restricted to terms allowed by the dependence of n upon k. In 
fact we can symbolize this restriction by writing 

k n ( k )  

k L n  

= 2 e  Pk'/r q(k, T) (42) 
k 
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where ;(k(n)u is the previously mentioned degeneracy, and 

q(k, T) = ~ z~(n) ue ,(t),/r (43) 
n 

is obviously the analog of the partition function in the canonical 
ensemble. (23) 

Of course, the Bottzmann constant does not appear in our develop- 
ment, since it obviously has no meaning in the present context. We could, 
of course, imitate the Boltzmann constant by redefining the temperature 
scale so that a constant would appear in front of T in Eq. (41). This, 
however, would be pure definition, and so we avoid it. However, in any 
given system c~ and fl or, alternatively, p and T, must be determined from 
the experimental data. We address this subject later. 

7. I N T E R P R E T A T I O N  OF T H E R M O D Y N A M I C - L I K E  
Q U A N T I T I E S  

Beginning with Eq. (39), the analogs of other thermodynamic quan- 
tities, besides T, p, ~, and {, can be defined, and the relation between them 
determined by means of partial differentiation, just as such relations are 
developed in ordinary thermodynamics~ As indicated earlier, in connection 
with the discussion of undetermined multipliers, the significances of the 
analog quantitites need to be investigated. 

The entropy ~ retains its usual significance as a measure of disorder. 
How about the temperature? From Eq. (39) we see that 

T =  (0f/c~g)~ (44) 

We would expect that (at typical velocities) as the average velocity ~ is 
increased, the drivers would, on the basis of safety requirements, not 
tolerate much disorder. Thus, at typical velocities, we would except that 
would be a decreasing function of ~. At very high average velocities we 
would expect the drivers to be organized to the extent that they would all 
drive with about the same velocity. 

If, as indicated, ~ is a decreasing function of g, the derivative in 
Eq. (44) would be negative. Thus we expect the "traffic temperature," T, to 
be negative. We shall see, later, that, at typical velocities, the experimental 
data require T to, indeed, be negative. 

Are there any circumstances under which we should expect T to be 
positive? Consider the case of a traffic jam when all vehicles are stopped 
and very close to one another. As the jam begins to break, the cars increase 
their velocities, ~ and [ remain initially small, and we expect the degree of 
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disorder to also increase, i.e., the distributions of spacings and velocities 
should both broaden. Under these conditions f increases with ~7, and 
Eq. (44) requires T to be positive. This conjecture is also confirmed later. 

T summarizes the "collective" behavior of the drivers, and must be 
determined from experimental data. As such it is one of the convenient 
parameters which characterizes those data. Its modulus admits of a nice 
interpretation. The derivative on the right of Eq. (44) identifies T as the 
rate of change of the collective average velocity with the degree of collective 
disorder. It represents the collective response of the system to a possibly 
threatening change in the degree of disorder. Thus I TI (the absolute value 
being chosen to assure a positive quantity) might be viewed as the system's 
collective sensitivity to a change in degree of order (disorder). We shall 
henceforth refer to [TI as the collective sensitivity of the single-lane system. 
Conceivably, it could be a parameter useful to traffic engineers. However 
we do not pursue this point here. 

Similar considerations can be advanced with respect to p, the traffic 
pressure, which, according to Eq. (39), may be represented as 

p = -(Of/J).,, (45) 

The traffic pressure is therefore the rate of change of average velocity with 
respect to the average spacing, when the degree of order is maintained con- 
stant. One would expect that, at typical velocities, the drivers would slow 
down when the spacing between cars is decreased, so that when the 
denominator in the derivative on the right of Eq. (45) is negative the same 
would be true of the numerator, and the derivative itself would be positive. 
Equation (45) then requires that p itself be negative. This conclusion can 
be verified with more rigor by referring to Eq. (41) where the partition 
function A is represented by the sum on the right. If T is negative then this 
sum would not converge (since it extends to infinite values of n) unless p 
were negative. 

The coefficients (~s/J)r,  (0U@)r are also of interest. However, they 
are related, through Maxwell relations, (24) to derivatives which can be 
obtained from the equation of state which we discuss later. We therefore 
delay discussion of these derivatives until then. 

As an example of the usefulness of thermodynamic-like variables, con- 
sider the flux of f of cars. This is given by the product of the average den- 
sity and the average velocity. Thus 

f =  ~/[ (46) 

One might be interested in setting a speed limit (or doing something) to 
control the average velocity in such a way that f is maximized subject to 
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the maintenance of a good level of "collective sensitivity," [T[, because such 
a level might help in the avoidance of accidents. Then one would be 
interested in the derivative 

(Of/O~)r (47) 

In order to evaluate this derivative it would be convenient to express f as a 
function of g and 7". This can obviously be accomplished by using the par- 
tition function to evaluate g and [ as functions of T and p, and, then, 
through Eq. (46), f as a function of these variables. Then one could use 
standard thermodynamic transformation theory, involving partial differen- 
tiation, to obtain the derivative in Eq. (47). 

8. " F O L L O W - T H E - L E A D E R "  I N T E R A C T I O N  

As indicated earlier, the subject of the appropriate theory for modeling 
cars in a single lane of traffic has had extensive study, and, one approach, 
the so-called "follow-the-leader" concept, has received considerable 
attention. 5 Several empirical studies pursued from different points of view, 
including some theoretical considerations, have suggested a common form 
for the interaction between cars. We shall adopt this form. However, it 
should be emphasized, once more, that the thermodynamic approach is in 
no way limited to this particular form. We choose it because it has been 
verified by some investigators, and because it is particularly convenient for 
illustrating the theory. 

Several idealizations are introduced at the outset. All the cars in the 
single lane are assumed to be identical, and all the drivers are supposed to 
have the same response. Clearly we can only be talking about some sort of 
average car, and also about an average driver. The interaction is charac- 
terized by having the acceleration of t he j t h  car, in a line of cars, expressed 
in terms of the velocities and positions of both the ( j -  l)st and j th  car. 
This relation is 

dvj(t + ~) _ 2o [ vj_ l(t) - vj(t) 7 
(48) 

d----7- [_~j_a(t) xj(t)J 

In this equation vj is the velocity of the j th  car and xj is its position, while 
vj ~ and xj_ t are the corresponding quantities for the ( j - l ) s t  car. The 
quantity t represents time, and it is evident from Eq. (48) that vj and x; are 

5 For reviews of car-following, hydrodynamic, and kinematic models see, for example, 
Refs. 16, 17, and 26. Single-lane traffic models and experiments have been addressed in a 
series of symposia on traffic flow theory; for example see Refs. 14 and 27. 
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regarded as functions of time. The quantity f in Eq. (48) is a "response 
time," and its appearance in the equation indicates that the acceleration, 
dv/dt,  which the j th  car undertakes, at the time t + ~, is in response to a 
stimulus which occurred (right side of the equation) at time t. The 
parameter 20 is called the sensitivity, 6 and may vary from road to road. 
For example, (15) the values of 20 measured, respectively, on the General 
Motors test track, in the Holland Tunnel, and in the Lincoln Tunnel are 
27.4, 18.2, and 20.3 miles per hour. Incidentially, the values of the response 
time measured on these respective roads are 1.5, 1.4, and 1.2 sec. We note 
that vj appearing in Eq. (48), is given by 

vj = d x / d t  (49) 

Apart from the effect of the response time, Eq. (48) indicates that the 
acceleration of the following car is proportional to the difference in 
velocities between the two cars (leading and following), and inversely 
proportional to their separation. This inverse relation provides a damping 
factor, so that when the cars are separated by a large enough distance there 
is effectively no interaction. Equation (48) can almost be arrived at without 
experiment if one demands that the interaction between the cars be of such 
a nature that a disturbance, generated by the erratic behavior of some car 
in the line, not be propagated along the line as a growing wave, and an 
instability/jS~ 

Other relations resembling Eq. (48) have been suggested (see Ref. 16). 
For example, some of them raise the numerator and denominator in the 
brackets of Eq. (48) to various powers. Others introduce functions between 
2o, and the bracketed expression. Some variations include the physical 
effects of inertia. However, in the end, these variations do not introduce 
dramatic changes into the overall behavior of the traffic system. 

Equation (48) can only have a probabilistic meaning. Thus given 
vj 1 - vj and xj_ 1 - xj, a given acceleration is likely to be observed with a 
well-defined probability. The acceleration on the right of Eq. (48) should 
really be interpreted as some average acceleration. In order to achieve a 
useful simplication, in Eq. (48) this average has been replaced by the actual 
acceleration in which vj on the left is identical with vj on the right. Clearly, 
serious order-of-averaging effects may have been ignored. 

The dynamics of the line of cars is of course determined by Eq. (48). 
This is a nonlinear relation which can lead to complicated motion. 
However, if one ignores the response time ~ (because it is relatively 
short an excellent approximation in many circumstances), Eq. (48) leads 

6 In view of the fact that the absolute value of the "traffic temperature" was interpreted, in 
Section 7, as the "collective sensitivity" we will refer to 2 o as the "individual sensitivity." 
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to an extremely simple relation between vj and xj 1 - x  j, the distance 
(headway) separating the two cars. Thus, setting f = 0 ,  and substituting 
Eq. (49) into the right-hand side of Eq. (48), leads to the result 

in which 

dvj= )~odln(xj l + x j ) -  2od ln  lj (50t 

!J = X/- ~ - XJ (51 ) 

and represents the distance by which the j t h  car trails the ( j - l ) s t  car. 
Equation (50) can be integrated immediately, subject to the condition that 
vj is 0 when 2j = a, where a is the observed characteristic distance between 
the centers of the two cars when they come to a halt. It is only common 
sense to assume that an individual driver will bring his car to a stop when 
it is close to the leading car. The integration of Eq. (50) in this manner then 
yields the relation 

lj = ae ~/~~ (52) 

This relation [-Eq. (52)] is what, for lack of a better term, we shall call the 
"interaction" between the cars. It is the same for every car, and requires 
that a car traveling at a definite velocity (with respect to a fixed 
"laboratory" frame of reference) trail the preceding car by a prescribed dis- 
tance. 

If we had not made the possibly severe approximation in which an 
average acceleration on the left of Eq. (48) is replaced by dvjd t  in which vj 
is the vj appearing on the right, then Eq. (52) would be replaced by 

Prob(vj) = f ( l j ,  vj) (52a) 

where Prob(vj) is the probability of the j th  car having the velocity vj when 
the separation is lj. In effect we have simplified the relation to 

vj = )oo ln( l fa )  (52b) 

where Eq. (52b) is simply another form of Eq. (52). 
When working with the "quantized" system of Section 6 Eq. (52a) can 

be associated with the degeneracy )~k(n)u appearing in Eqs. (42) and (43), 
and describes the number of states lying in the velocity range nu to (n + 1) u 
when the separation between cars is kw. The quantities u and w are the 
previously defined "quanta" of velocity and distance, while n and k are 
integers. The correspondence is perhaps clearer if we write, in place of 
Eq. (52a), 

Probk(n)u = f ( k ,  n)u (52c) 

822/42/3-4-27 
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Clearly, Probk(n)u and zk(n)u are considered to be proportional to one 
another. Equation (52) also introduces another important point. The quan- 
tities vj and lj which appear in it refer only to the j th  car. Therefore, 
although Eq. (52) represents an interaction between cars, since lj is a dis- 
tance between cars, the state of the j th  car is defined independently of the 
states of the other cars. Thus the "consistency" arguments of Levine and 
coworkers (1~ apply. 

One last point concerning Eq. (52) is worth mentioning. 
Measurements have been performed on the actual flow of traffic in a single 
lane, e.g., in the Holland Tunnel in New York. (13) These measurements 
which deal with the "collection" of cars lead to the following empirical 
relation between traffic flux q, (cars/second) and average linear density of 
cars k (cars/ft): 

q = ke  ln (k i / k )  (53) 

where c and ki are constants. [We use q and k for the flux and linear den- 
sity, only in Eq. (53), because they were so used in Ref. 13. Elsewhere in the 
present paper q and k have different meanings.] Equation (53) is easily 
rationalized in terms of Eq. (52), if q = kv; it is in fact the same relation. 

However Eq. (53) results from a direct measurement on the collection 
of cars while Eq. (52) was obtained by integration of the differential 
equation, Eq. (48), discovered in measurements on only two cars, a leader 
and a follower. These extreme ways of arriving at a common result provide 
it with a measure of respectability. 

9. DEAL ING W I T H  T H E  D E G E N E R A C Y  x k ( n ) u  

Unfortunately no useful data appear to exist concerning the 
probability distribution, Probk(n)u of Eq. (52c), in which u is a quantum of 
velocity, or equivalently, for the degeneracy "zk(n)u which appears in 
Eq. (43) of Section 6. As a result, in order to continue the development, we 
rely on an inversion of the order of averaging, which we now discuss. 

We define a number ri(k) as the closest integer to n*(k) defined by 

e-'*(k~u/r= q(k, T) (54) 

so that the degeneracy, zk(n)u, and the summation of Eq. (43) are taken 
into account. Then, with minimum error (especially when u and w are 
small) we replace Eq. (54) with 

e n(k~/r= q(k, T) (55) 
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which converts Eq. (42) into 

A = y,  e PkW/re-~k)~/v (56) 
k 

Now kw is determined as a function of ~u by Eq. (55), so we can write 

k(~)w = In (57) 

and, in place of Eq. (56), we then get 

d = ~ e Pln/Te--nu/T 
n 

As u-~ 0 we can replace this sum by an integral, writing 

(58) 

A = e-Pt~/re-eU/r dfi (59) 

Replacing flu by y converts Eq. (59) into 

J = (fo~ e-P'(Y)/re-Y/r d y ) / u  

= Ao/u (60) 

We now examine the influence of the quanta u and w on the various 
thermodynamic variables. We first examine g in this context. The most con- 
venient equation to start with is Eq. (38) which may be written as 

Pr 
S = - ~ + - ~  + In A (61) 

In this equation we know that g and [ are independent of u and w since 
they are fixed by the constraints. However, even with very small quanta, 
the same cannot be said of In A in Eq. (60) where Ao is the integral in the 
parentheses, and clearly does not depend upon u or w. 

According to Eq. (60) we have 

in A = l n  A0-1n  u (62) 

Thus as u goes to 0, In A becomes infinite. At the same time, since In A 
appears in Eq. (61), ~ becomes infinite. The situation is somewhat saved by 
the fact that we are usually interested in entropy differences, and, in that 
case, the In u will cancel out of the difference. 
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Next we examine how T and p depend on u as it becomes small. For 
this purpose we rearrange Eq. (61) to read 

T ( g -  In A) = ~5 + p[ (63) 

Since both 2 and In A contain the term In u, that term cancels out of the 
expression in parentheses on the left of Eq. (63). Thus if g and [ do not 
depend on u, as we have indicated, there is no reason for either T or p to 
depend upon u. However, this argument is based on the assumption that u 
is indeed small. Just how small u must be before it no longer plays a role in 
the thermodynamics (outside of its influence on the entropy) is a matter 
which can only be determined by numerical analysis. We can be fairly con- 
fident, however, that u will cease to play a role when it reaches some level 
of smallness. Among other things, we examine this question later. 

Up to this point our development of the single-lane analog ther- 
modynamics only requires that the state of a following car be determined 
by its own parameters, i.e., by its headway and its velocity. As such, the 
single-lane system is characterized by independent state probabilities for 
each car. Furthermore the theory readily accommodates a possible depen- 
dence of velocity upon headway. Hence, the theory is quite general, and 
can be applied to numerous specific car-following laws. 

Returning to Eq. (52), the quantized version becomes 

o r  

Then from Eq. (55) 
function 

kw = ac ri(k)u/20 

~(k )u = 2o ln(kw/a) (64) 

we have for the "canonical ensemble" partition 

q(k, T)= (a/kw) ;~ (65) 

All of these equations would be precise if the velocities corresponding to a 
given headway (car separation) were narrowly distributed as a delta 
function about a central velocity ~(k)u. 

Making this assumption we begin our application, in the next section, 
by deriving an equation of state and then examining the effects of a passage 
to the continuum in which the "quanta" u and w achieve zero size. 

10. EQUATION OF STATE A N D  SENSITIV ITY OF THE STATE 
VARIABLES TO THE SIZE OF THE Q U A N T A  

Adopting the formalism developed in Section 6 we derive the equation 
of state by employing the thermodynamic relation 

[ =  (~/c?p)T = - { 0 ( T l n  d)/~?p)}r= -T{~?(ln A)/Op}r (66) 
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In the following, we delete the bar in ~i, and assume that ri or simply n is 
related to k by Eq. (64). In order to evaluate /, according to Eq. (66), we 
need first to evaluate A. In doing this we will assume that, in the real case, 
the size of the quantum, u, is small enough, so that in passing to the con- 
tinuum, we can use the integral version of Ao appearing in Eq. (60). Later 
in this section we test the validity of this assumption. 

In performing the integration, it is convenient to use Eq. (52) to trans- 
form from y (the velocity), in Eq. (60), to the spacing l(y). With this trans- 
formation A 0 becomes 

Ao=2o  a~~ l-E(;~o/T)+l]e-Pt/V dl (67) 

It is even more convenient to "scale" within the framework of a "law of 
corresponding states" for our traffic system, by transforming, in Eq. (67), to 
the following dimensionless variables: 

0 = aP/)~o (68) 

= l/a (69) 

= T/)t o (70) 

Eqaation (67) now becomes 

f 
o:3  

z~O=~O 1 ~-(l/ '+l)e-~r d~ (71) 

and Eq. (66) may be expressed, in reduced form, as 

~= [/a = - r{~( ln  A )/OO }, = -~{(3(ln Ao)/~(~ }~ (72) 

Clearly qt, ~, and r, are, respectively, the reduced pressure, spacing, and 
temperature. 

Now, when ( l / r ) +  1 = - n ,  where n is a positive integer or 0, the 
integral in Eq. (71) has an analytical representation so that we may express 
the partition function as 

Ao=2oe ~"+1)~ ~ (n!/k!)[-(n+ l)~b] k " 

k=O 
(73) 

in which the reduced pressure gt is assumed to be negative (as is the case in 
the Holland Tunnel data which we discuss later), and 

n =  - ( l / z ) - 1  (74) 
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Substitution of Eq. (73) into Eq. (72) finally yields the reduced equation of 
state, 

k=O 

(n!/k!)[-(n+ 1)~] k-n ' (75) 
k 0 

in which the reduced temperature may be easily inserted by use of Eq. (74). 
We note that the equation of state in no way depends on the quanta u or w. 

Figure 1, which exhibits plots of Eq. (75), shows three '~ 
corresponding to the reduced temperatures r = - 0 . 1 2 5 ,  -0.167, and 
-0 .250 which are, in turn, derived by assuming values n = 7, 5, and 3, 
respectively. The ordinate in the figure is the reduced pressure q~ and the 
abscissa, the reduced average spacing 4. The three particular reduced tem- 
peratures have been chosen because they bracket the range in which the 
actual traffic temperature lies in the study (to be discussed in the next sec- 
tion) of velocity and headway distributions in the Holland Tunnel. 

The isotherms, in Fig. 1, all decrease sharply to very large negative 
pressures when the average spacing between cars becomes small, 
demonstrating, as expected, that the drivers decelerate very rapidly when 

- 2 . 0  

LO ~ - 1 . 5  
Od 

CO 
CO 
W 

- I . 0  
O_ 

Ld 
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-0. 5 

bJ 
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0.0 , , , ~ , 

2 3 4 5 8 

REDUCED AVERAGE SPACING, 

Fig. 1. Theoretical traffic isotherms. Reduced pressure, ~b, as a function of reduced average 
spacing ~. Isotherms determined by the reduced equation of state, Eq. (75), corresponding to 
reduced temperatures, ~, of - 0 . 1 2 5  (n = 7), 0.167 (n = 5), a n d  - 0 . 2 5 0  (n = 3), respectively, 
from left to right. 
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they are close to one another, and, at the same time are forced to move 
even closer while the degree of order remains unchanged. The pressure 
reaches - oe only at the halting distance, ~ = 1. The drivers really "put on 
the brakes" to avoid collisions. At very large separations the isotherms con- 
verge on one another. This implies that the "collective sensitivity," which 
the temperature represents, plays a minimal role in the collective driving 
behavior when car separations are large. The dependence of entropy on 
spacing and pressure are of interest, and the corresponding derivatives are 
given by the standard "Maxwell" relations. These are 

( OUOl) r = (@/0 T)r (76a) 

(c~U@) T = -(~[/OT)p (76b) 

The signs of the derivatives on the right sides of the equation may be 
obtained from an examination of the isotherms of Fig. 1. Thus the sign of 
the right side of Eq. (76a) may be determined by following the pressure 
parallel to the ordinate in the figure. Along such a line, the pressure 
increases negatively with elevation, but so does the temperature as we 
move from isotherm to isotherm. Thus, the right side of Eq. (76a) is 
positive, and so we learn, form the left side, that at constant temperature 
(constant "collective sensitivity") the degree of disorder increases with 
increasing average spacing (at least when the temperature is negative). In 
an exactly similar manner we find by transversing a line parallel to the 
abscissa (at constant ordinate), from left to right in the figure, that the 
right side of Eq. (76b) is also positive. Then from the left side, we learn 
that, at constant collective sensitivity, the degree of disorder also increases 
with pressure. This is not very intuitive, but it appears to be the case. The 
nonintuitive aspect of this result originates, of course, in the condition of 
constant collective sensitivity, i.e., constant I TI, a constraint whose con- 
sequences are not intuitively simple. 

Another interesting feature is the positive slope of pressure versus spac- 
ing in Fig. 1, i.e., 

(@/O[)r>O (77) 

If we define the analog Helmholtz free energy, namely, 

a = v - T g  

then, using Eq.(77) together with the usual procedure 
theory, (24/it is possible to show that 

(Aa) T,1 < O 

for a fluctuation in the local linear density, 

(78) 

of stability 

(79) 

in an equilibrium state 
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described by the equation of state in Fig. 1. Thus, unlike the case of a 
physical system, the Helmholtz free energy achieves a maximum (rather 
than a minimum) in the unfluctuated state. This is intuitively satisfying 
since one expects the drivers to attempt to maximize g, their average 
velocity in the regression of a fluctuation, while we know that the entropy 
will be increased as the constraints corresponding to the fluctuation are 
removed. However, in this (traffic) case, T is negative so that an increase in 

in Eq. (78) translates into an increase in 6, in addition to the increase due 
to the increase in 6. Thus s tends to a maximum! 

We have drawn attention to the fact that, in the various dynamic 
theories, velocity is regarded as a function only of average density. 
However, as early as Eq. (39) we have exhibited /~ as depending on two 
variables, g as well as /. How do we reconcile these points of view? The 
answer is as follows. 

When traffic flows through the Holland Tunnel, for example, it has a 
particular temperature, or entropy, etc., whatever additional variable we 
wish to use, which has already adjusted itself, and, in the simplest case, 
remains constant. No attempt has been made, in the past, to measure this 
constant (but variable) temperature. (Later, in this paper, we do make such 
an attempt.) Thus there appears to be but one variable. 

However, additional variables could be "constrained into action" if we 
so wished. For example, a long line of traffic might have both its density 
and velocity arbitrarily controlled by having the first and last cars con- 
strained to remain a constant distance from one another, and to both move 
at the same fixed velocity. This constraint may be somewhat artificial, but 
this is often the case with "virtual variations" in thermodynamics. The 
values of ~ and [which are fixed by the constraint may not satisfy the sim- 
ple relation connecting them in the unconstrained case. In this case the 
functional relationship must display another variable. 

The integral in Eq. (71), and consequently the equation of state, 
Eq. (75), is derived on the assumption that the quantum, u, is small enough 
so that the same result is obtained, by passing to the continuum, as would 
be obtained if we performed the actual sum. How small must u be before 
this is true? We examine this question using a system in which the 
individual sensitivity 2 o = 27.79 ft sec-l ,  the halting distance a = 30.34 ft, 
p = - 0 . 2 0 9 0  sec -1, and T = - 4 . 4 4 1  ft sec -1. These values of the various 
parameters are typical of real traffic systems. For  this system, the average 
velocity g and the average spacing/, as functions of the size of the quantum 
(in feet per second), have been evaluated by performing the actual sums 
numerically in the partitition function, rather than by passing to the con- 
tinuum and integrating. A result (for the average velocity) is shown in 
Fig. 2. 
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Fig. 2. Effect of quantum on average velocity. Average velocity, ~, versus size of the quantum 
of velocity, u. Parameters employed: Z 0=27.79 ft sec-J, a= 30.34 ft, c~=0.047055, and 
/J=-0.225182 (p= -0.2090 sec land T=-4.441ftsec 1). 

In the figure, in spite of the erratic behavior of the function at larger 
values of the quantum, we find that the average quantity becomes constant 
when u is less than or equal to the individual sensitivity, 2o. Thus, it appears 
feasible to pass the continuum if the quantum is smaller than the individual 
sensitivity. 

Note  that I TL, the collective sensitivity, and )~o, the individual sen- 
sitivity, have the same dimensions, namely, those of velocity. 

In the next section we deal with some experimental data. 

11. T R E A T M E N T  OF E X P E R I M E N T A L  D A T A  

In this section we attempt a comparison with existing experimental 
data. For this purpose we set the quantum u equal to unity. We shall be 
interested in systems in which 20 is considerably larger than unity, and, 
according to Fig. 2, this choice of  u should place us in the range where the 
size of the quantum has no effect on the result. With this convenient sim- 
plification Eq. (29) becomes 

Pv = {exp[  - (pae ~/;~ + v)/T] }/A o (80) 

in which we have used Eqs. (30), (31), (52), (57), and (60), and where we 
use v = n, i.e., v is an integer. Now,  apparently, no measurements have been 
made, designed primarily to determine the distribution Pv, or, for that mat- 
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ter, the distribution of spacings between cars. However, there is a paper by 
Edie, Foote, Herman, and Rothery which describes a study in which the 
primary purpose was to measure both the average velocity and average flux 
density of cars as a function of the average headway. However, in order to 
acquire this information, the authors had to perform some measurement of 
the above-mentioned distribution. Thus, inadvertently, some appropriate 
experimental data are available. The measurements were made in the 
Holland Tunnel in New York. One of the goals of the study was to validate 
the relation in Eq. (52), and, indeed, a reasonable experimental verification 
was accomplished. 

The study involved 23,377 cars. Table II of Edie et  al. reports the data. 
In the table the cars are classified into velocity intervals of 2 ft/sec. The 
observed number of cars in each such velocity interval is listed in the table, 
as well as the average headway of these cars. The solid curve in Fig. 3 is the 
normalized probability density per unit velocity [corresponding to P~ in 
Eq. (80)] obtained from these data. The jagged section of the curve, cen- 
tered on 40 ft sec i, seems to indicate that, even though more than 23,000 
cars were involved, this number was still not large enough to average all 
the noise. Alternatively the rather structured fluctuations might persist in 
an even larger sample, and indicate that the system is not quite ergodic. 
Only further work, both theoretical and experimental (further observation 
of a larger number of cars) can resolve this question. Nevertheless, assum- 
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ing that the system is almost ergodic, we can compare the observed data 
with the theoretical prediction of Eq. (80). For this purpose we need the 
parameters a, 2 o, T, and p. The quantities a and 2o were measured directly 
(from the data) by the authors. They report 

a = 30,34 fl 

2o = 27,79 ft sec i (81) 

The quanUties T and p can also be determined from their data. We 
note that both the average spacing [ and the average velocity ~5 can be 
obtained by weighting the various spacings and velocities with the 
probability P~ specified by Eq. (80). Actually, from the definition of A, it is 
easy to show that this result corresponds to the relations 

[= - r { O  in A(p, r)/ap} r (82) 

e=T2{~lnA(p, T)/OT},+pT{31nA(p, T)/ep} r (83) 

Thus, i f / a n d  ~ are available from the observed data, Eqs. (82) and (83) 
can be solved for T and p. We have evaluated [ and ~ from the data in 
Table II of Edie et aL, and used Eqs. (82) and (83) for the determination of 
T and p. The values of these parameters are 

T =  -4,44l  ft sec -L (84) 

p = -0.2090 sec 1 (85) 

It should be noted that the experimental temperature, for this system, 
proves to be negative, and that the same is true (as is required) of the 
pressure. 

With T and p available, it becomes possible to compare P~, given by 
Eq. (80), with the experimental (solid) curve in Fig. 3. The dashed curve in 
the figure is P~ from Eq. (80), calculated using Eqs. (81), (84), and (85). 
Although the agreement is not perfect, the two curves are similar enough to 
lend credibility to the theory. One can use one's eye to easily invert both 
the positive and negative noisy fluctuations in the solid (experimental) 
curve, so that the two curves are brought nearly into coincidence. If the 
data are only incomplete, in the sense that not a large enough number of 
cars has been included in the sample, then studies involving a larger num- 
ber might bring the curves directly into coincidence. On the other hand, if 
the system is nonergodic, or if other unrecognized factors are operative, 
then no amount of augmentation of the sample will accomplish this. 

In closing this section we note that the values of T and p are obtained, 
from the values o f / a n d  rT, by using Eqs. (82) and (83). These equations 
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assure that the relations between the parameters are "thermodynamically 
valid." Therefore, the same relation should be implicit in the equation of 
state curves drawn in Fig. 1. It is satisfying to note that this is the case. If 
the value of [ obtained from Table II of Edie et  al. is used with the value of 
T in Eq, (84), in connection with the curves of Fig. 1, it is discovered that 
the appropriate isotherm gives the value of p appearing in Eq. (85). Thus 
the internal consistency of the procedure is demonstrated. 

The distribution, Eq. (80), using the Holland Tunnel parameters, very 
closely resembles a Gaussian. In fact when this resemblence is quantified by 
expanding In P~ in terms of v -O,  keeping only quadratic terms, the 
resulting Gaussian is almost indistinguishable from the dashed curve in 
Fig. 3. Figure 4 exhibits the comparison. 

In the Gaussian approximation it is easy to show that the square root 
of the fluctuation is given as follows: 

( ( v  - g)2 } ,/= = (I TI ,~0)'/2 (86) 

so that the *'width" of the distribution is given by the geometric mean of 
the collective and individual sensitivities. 

12.  P A I R  C O R R E L A T I O N  F U N C T I O N  

The use of Eqs. (29) and (56) coupled to Eq. (52) permits us to learn 
something about the "structure" of the traffic. Some study of this structure 
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was attempted in Edie et al. (see also Ref. 17a), and only tentative results 
were obtained. In any event, we are not able to interpret those results using 
the present method. We can, however, investigate several different measures 
of the structure, including (1) the distribution of various nearest neighbors 
(first nearest neighbor, second neighbor, etc.) following a particular car, 
and (2) the probability that any following car is located at a given distance 
from a particular car. The second measure is, in fact, the standard pair 
correlation function. 

If we pass to the continuum, in Eqs. (29) and (56), and let u become 
infinitesimal while, at the same time, using Eq. (52) to express nu in terms 
of /, we easily obtain the space distribution function of the first nearest 
following car. If we also replace ~ and/~ in Eq. (29) by making use of Eqs. 
(30) and (31) we obtain, for the distribution of this first nearest neighbor, 
the result 

PI(/) d[= Kl  (20/T)- l e-Pl/r  dl (87) 

where K is a normalization constant, and the quantity on the left is the 
probability that the nearest "following" neighbor lies at l in the range dl. 

The distribution of the second nearest neighbor with respect to the 
first nearest neighbor is given by an expression, fully identical with that in 
Eq. (87), except that now l refers to the distance between the first and the 
second nearest neighbors. The probability of position x, of the center of the 
second nearest neighbor, with respect to the center of the original car, is 
then obtained as the product of the probabilities of location of the first and 
second nearest neighbors summed over all locations of the first neighbor, 
the center of the second nearest neighbor being held fixed at x. Thus we 
obtain 

P2(x) 4x = P ~ ( x -  3) P~(~) d~ dx (88) 

where P2(x)dx  is the probability that the second nearest neighbor lies in 
the range dr, at a distance x behind the original car. Continuing in this 
manner we can show, in general, that 

j -- I )a 

The limits in the integrals of Eqs. 
that the ( j -  1)st car can have its 

7 
P,(x-  ~) Pj 1(~) d,j  dx (89) 

(88) and (89) are determined by the fact 
center no closer to the center of the j t h  

car than a distance a, and that its center must be at least a distance 
( j -  1)a behind the center of the original car. 



678 Reiss, Hamrnerich, and Nlontrotl 

By repeated application of the convolution theorem for the Laplace 
transform to the relation, Eq. (89), we find that 

P/(t + ja) = 5 ~ ~ [P~(t + a)] };) (90) 

in which 50 signifies the Laplace transform while 50 ~ represents its 
inverse, and where 

;5 50[Pl(t+a)]~- e " tPl( t+a)  dt (91) 

In Eq. (87) it is convenient to replace ()~o/T)- 1 by h and p/T by 7. Then 
K is determined by the relation 

K = f'e .l dl (92) 

In the special case that h is an integral, the integral in this equation can be 
evaluated leading to the result 

[ 1-' K= e - ~  (h!/k!)(ak/cd '-k+L) (93) 
k=O 

In this case it is also possible to evaluate the Laplace transform appearing 
in Eq. (91) and we obtain 

~k~[Pl(th-a)] = -  (h!/k!)[a'/(s+7)'- ,+1]  (h!/kI)(a,/c~h ~+,) 
k 0 k 0 

(94) 

This equation may be substituted into Eq. (90) leading to an extensive sum 
of terms. However, each of these terms may be inverted (in the Laplace 
transform sense) so that an analytical expression for Pj(t + j  a) is obtained. 

If we are interested in deriving the pair correlation function which 
gives the density of cars in dx, a distance x behind the original car, that 
density is composed of the sum of the densities of all successive neighbors, 
since we need not specify which neighbor is involved. Thus we find for the 
pair correlation function, 

P (x )=  ~ Pj(x) (95) 
j - -1  

However, the sum on the right will not contain an infinite number of terms, 
unless j =  oc. Any particular distance x can only accommodate a finite 
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number of cars, i.e., equal to the number of times that the halting distance 
a, can be fit into x. Thus Pj for j larger than this number must vanish. In 
any event the method for determining P(x) involves, first evaluating the 
various P1 and substituting them into Eq. (95). 

In the special case h = 0, Eqs. (93) and (94) become, respectively, 

K =  c~e ~" (96) 

-~[ Pl( t + a)]  = ~/(s + ct) (97) 

where s is the transform parameter. Substituting Eq. (97) into Eq. (90) 
leads, for the case h = 0, to the result 

Pj(x) = ~ J [ ( x  - ja )  J- ' / ( j -  a)! ] e ~(x-j.)  (98) 

This equation can be substituted into Eq. (95) to arrive at the pair 
correlation function for h = 0. 

In Fig. 5 we plot P(x) for a case in which h is equal to zero, c~ is equal 
to 0.047055, and a, equal to 30.34 ft. We recall that ct = piT. In the figure, 
P(x) is plotted vs. x/a. It can be seen that the pair correlation function 
exhibits damped oscillations, implying short-range order, just as in the case 
of the pair correlation function for molecules in a fluid. We also note that, 
for this particular case in which h = 0, the correlation function starts with a 
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Fig. 5. Pair correlation function simulating equality of "collective" and "individual" sen- 
sitivities. Pair correlation function, P(x) of Eq. (95), versus reduced distance (a = 30.34 ft) for 
the case h = 0. Calculations employed Eq. (98) with c~ = 0.047055.  This situation corresponds 
to T =  - 2 0 ,  wi th  20 = 27.79 ft sec - j ,  p r e d i c t i n g  17= 12.58 ft sec -~ and [ =  51.05 ft. 
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negative slope at the halting distance, a. The prediction of the correlation 
function, for this case, is that the most probable position of the nearest 
neighbor is at the halting distance. This runs counter to one's intuition, 
since it implies that the following car tends, excessively, to "tailgate" the 
leading car. However, a value of h = 0  corresponds to an unrealistic 
situation, namely, one in which the exponent of l in Eq. (87) vanishes. This 
only occurs when 

T =  -20 (99) 

Since IT] is the "collective" sensitivity, while 2o is the "individual" sen- 
sitivity, Eq. (99) implies that the two sensitivities are equal! However, it is 
only reasonable to assume that the "collective" sensitivity, since it involves 
the cooperation of a large number of drivers, will be smaller than the 
"individual" one. In that case (when T is negative), h will be positive. The 
maximum in P1 occurs at 

l=  lmax = h r / p  (100) 

and since the ratio Tip is positive, this means that the maximum occurs at 
increasingly larger positive values of l as - T  decreases and h increases, 
One expects, because of this, that the maximum will exceed a, so that the 
most probable position for the nearest neighbor will be located at distances 
larger than the halting distance. As we shall see, this is true for the data in 
Table II of Edie et al. 

We now turn to this data, and attempt to calculate the pair 
correlation function for the line of cars studied in the Holland Tunel. For 
this case, T and p are given by Eqs. (84) and (85). Furthermore, 2 o is 
27.79 ft sec -l. From these data one readily finds 

h =  5.258~5 (101) 

and 

= 0.047055 (102) 

If h were approximated by the integer 5, we could use Eqs. (93) and (94) 
together with Eq. (90) to determine Pj. It turns out that the inversion 
specified by Eq. (90) can actually be performed analytically. However, the 
resulting expression is such a complicated sum, consisting of so many 
terms, that it is simpler to return to Eq. (88), and to solve the problem 
iteratively by first computing P2 from P1, P3 from P2, etc. Of course, in 
this process, the integral in Eq. (89) is evaluated numerically and the actual 
value for h is used. 
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tal data: ~ = 38.88 ft sec-1 and [ =  133.2 It). Dashed curve: nearest-neighbor distribution, P~(x) 
of Eq. (87), for the Holland Tunnel  data. 

A plot of P(x), for this case, obtained in this way, is show in Fig. 6. 
Again, the abscissa is x/a rather than x itself. As indicated in Eq. (81), a is 
30.34 ft. 

The dashed curve in Fig. 6 is a plot of P1, the distribution of the 
nearest neighbor for this case. P(x) is, of course, given by the solid curve. 
One notes that the amplitude of oscillation is much smaller lhan that for 
the case illustrated by Fig. 5. In fact, the second oscilIadon, which occurs in 
the neighborhood of x/a = 9, is hardly discernible in the plot. However, the 
actual numbers show it to be there. More important is the fact that the first 
maximum, unlike the case of Fig. 5, is at x/a -- 4. Thus the distribution does 
not start, at the halting distance, with a negative slope. This indicates, as 
anticipated earlier, that the "collective" is much smaller than the 
'~ sensitivity. Until the first maxmimum is reached, at x/a = 4 the 
dashed curve for P~ shows the distribution to be almost entirely accounted 
for by the first nearest neighbor. Beyond this point the second and further 
neighbors become dominant. We also note that the first maximum occurs 
at about the average spacing between cars which, for this case, is 
x/a = 4.39. Also the curve levels off, at large distances, at the observed 
average density of 0.00750 ft 1. 

~22/42/3-4-28 
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The pair correlation function appearing in Fig. 6 is consistent with the 
typical driver's perception (at typical velocities) of the traffic behind him. 
The main feature of the structure involves the car directly behind, and, 
beyond that, cars rapidly become uncorrelated. The damping of the 
oscillations appears to be connected with the disparity between the 
"individual" and "collective" sensitivities. The smaller the latter, the more 
chaotic, and less structured, is the traffic. 

We can still speculate on whether T can achieve positive values. The 
integral in Ao, Eq. (60), will converge when T is positive, as along as p is 
also positive. Now, 20 and a are parameters which refer to the behavior (on 
a particular road) of an individual driver. In contrast, T and p depend on 
the collective behavior of the drivers, and are not derivable from theory 
alone. They indeed reflect aspects of behavior which are not contained 
within ,~o and a. As a result they must be measured, in the same way that 
we obtained the values for the Holland Tunnel, i.e., from an analysis of the 
data. 

The question of positive temperature was mentioned briefly in Sec- 
tion 7. Unfortunately, apparently no data exist for the situations in which T 
and p are positive. We did however guess at the features which might give 
rise to such situations. A positive T implies that, at constant/ ,  the disorder 
#~creases as ~, the average velocity, increases. As indicated earlier, under 
normal driving circumstances we would expect the drivers to order them- 
selves, in the interest of safety, as they increase their average velocity. Thus 
we expect T to be negative, and this seems to be true of the Holland Tun- 
nel data. 

But as discussed in Section 7, there is one situation in which we might 
expect the opposite result, namely, a traffic jam in which all the cars are 
moving very slowly, and are almost bumper to bumper. In the limit of no 
movement, the cars would from a "lattice" of lattice parameter, a. They 
would thus form a one-dimensional, ordered "crystal" in which the entropy 
would be zero. As they begin to move, a certain amount of disorder must 
develop, and there must occur an increase of entropy. Thus we would have 
a case in which the entropy would indeed increase with an increase of 
average velocity. This suggests that we look for positive T in congested 
traffic situations in which the average velocity is small and the average den- 
sity is high. 7 

With this is mind we choose a case in which 0=2.967 ft sec i and 
/ =  34.02 ft. Thus ~ is small compared to 20 = 27.79 ft sec -1, the value for 
the Holland Tunnel, and { is only slightly larger than tl~e halting distance, 

A higher temperature has been hypothesized to correspond to greater traffic congestion by 
Wilson (Ref. 28). 
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Fig. 7. Pair correlation function simulating congested traffic. Pair  correlation function, P(x) 
of Eq. (95) versus reduced distance (a = 30.34 ft). Calculations employed Eqs. (87) and (89) 
with p = 0.2090 sec -1 and T=4.441  ft sec -l .  This situation corresponds to T =  0.16 20, with 
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a = 30.34 ft, for the Holland Tunnel. These values of ~ and [ together with 
the Holland Tunnel values of 20 and a require T=4.441 ft sec i and 
p =  0.2090 sec -1, both positive. For these values of p and T we can 
calculate the pair correlation function, just as we did for Fig. 6, for the 
measured values of p and T. The result is shown in Fig. 7. We see that 
there are indeed many oscillations, and that order extends to a much 
longer range than in the case of Fig. 6. The picture does give the impression 
of a crystal in the process of "melting." 

Since no experimental data exist for single-lane traffic at velocities and 
densities similar to those on which Fig. 7 is based, the discussion 
surrounding it, although interesting, remains speculative. 

13. S U M M A R Y  

The main points of this paper are the following: 

(1) Although entropy should be definable in nonphysical systems it 
should not be chosen arbitrarily as a measure of uncertainty. Rather it 
should arise naturally in a development which relates it, simply, to other 
measurables. 

(2) The most natural procedure for accomplishing this involves the 
maximum entropy formalism. 
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(3) The maximum entropy formalism has been shown, by Levine and 
his coworkers and by Shore and Johnson, to be the unique algorithm 
which together with known information (constraints) allows the consistent 
inference of probability distributions of independent events. Furthermore 
the distribution can be inferred, using consistency, without ever defining 
entropy or maximizing anything! As a result, the maximum entropy for- 
malism becomes merely a convenient procedure for generating the con- 
sistent distribution. However, as an assumption, it achieves a distinction 
which other assumptions do not have, because it is consistent. 

(4) Entropy though useful need not, and should not, occupy a 
primary position in a "thermodynamics" of a nonphysical system. Rather 
the methodology of the "thermodynamics," and especially the undetermined 
multipliers which may arise during its application, will have primary value. 

(5) We develop a thermodynamics, and configure it so that it is 
useful for the treatment of a system of vehicular traffic confined to a single 
lane. In particular, the interaction between cars is chosen to be one of those 
of the "follow-the-leader" variety, which has been suggested in the 
literature, and subjected to some experimental verification. However, it is 
emphasized that the thermodynamic framework is independent of the mode 
of interaction. 

(6) The equation of state for the traffic is derived. For negative tem- 
perature (collective sensitivity), it is shown that the Helmholtz free energy 
is reduced by fluctuations in local density. This, as well as negative tem- 
perature, is consistent with intuition. It is also shown that the "passage to 
the continuum" is essentially achieved when the quantum of velocity is less 
than the "individual" sensitivity. 

(7) Experimental data from the Holland Tunnel are analyzed in 
terms of our development and traffic temperature (collective sensitivity) 
and traffic pressure are determined. The temperature is negative, as expec- 
ted on the basis of intuition. 

(8) The theory allows one to evaluate the nearest-neighbor and pair 
correlation functions for the cars. Such correlation functions are actually 
evaluated for the Holland Tunnel data. 

(9) A hypothetical situation in which both average velocity and 
average headway are small is investigated. For this case the traffic tem- 
perature proves to be positive (again consistent with intuition) and the pair 
correlation function resembles that of a melting crystal, i.e., a traffic jam 
which is beginning to dissolve (again consistent with intuition). 

(10) It is emphasized that the thermodynamics and the ther- 
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modynamic parameters are analogs. The parameters (usually undetermined 
multipliers) have to be interpreted and measured However, they prove to 
be useful summarizers of the collective behavior of the traffic. 

14. NOTE IN CLOSING 

One of the authors of this paper, Professor E. W. Montroll, sadly 
passed away during the course of this work. Although in truth, Professor 
Montroll was not given the time to contribute heavily to the development 
of the paper, it would never have been started without his energy and 
inspiration. 

Another of the authors (H. Reiss) visited the Institute for Physical 
Science and Technology at the University of Maryland, in the fall of 1982, 
in order to collaborate with Montroll in research on the kinetics of the 
two-dimensional ferromagnet. Professor Montroll was "the last of the 
natural philosophers," and when Reiss arrived, Montroll was pondering, 
among many other things, one of his recent papers, titled "On the Entropy 
Function in Sociotechnical Systems." In this paper, he was looking for 
entropy (of some sort) in both the single-lane traffic system, and in, of all 
things, the Sears Roebuck catalog. He knew it was there, but he had not 
quite found it in a form with which he was comfortable. Montroll's 
curiosity was irresistible, and the visitor found himself working on traffic 
and not on the two-dimensional ferromagnet. Not much was lost however, 
and much was gained, because this led to the inception of the present 
paper. 

In addition to his many great contributions to mathematical physics, 
Professor Montroll had, for years, been interested in the application of 
physical science methodology to the solution of social science problems. 
His book, with Badger, Introduction to Quantitative Aspects of Social 
Phenomena, is an example of this. Among the things which interested him, 
in social and economic systems, was the possible role of entropy. Thus this 
paper goes beyond having him as a coauthor; it is dedicated to his 
memory. 
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